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1

Basic Concepts

1.1 What Is a Quantum Phase Transition?

Consider a Hamiltoniarl (g), whose degrees of freedom reside on the sites of a lattice, and
which varies as a function of a dimensionless coupgjnget us follow the evolution of the
ground state energy ¢l (g) as a function ofy. For the case of a finite lattice, this ground
state energy will generically be a smooth, analytic functiorgofThe main possibility

of an exception comes from the case wlgeoouples only to a conserved quantity (i.e.,
H(g) = Hp + gH;, whereHy and H; commute). This means th&l, and H; can be
simultaneously diagonalized and so the eigenfunctions are independgeteh though

the eigenvalues vary witly; then there can be a level-crossing where an excited level
becomes the ground stategat= g (say), creating a point of nonanalyticity of the ground
state energy as a function@fsee Fig. 1.1). The possibilities for afinitelattice are richer.

An avoided level-crossing between the ground and an excited state in a finite lattice could
become progressively sharper as the lattice size increases, leading to a nonanalyticity at
g = g. in the infinite lattice limit. We shall identify any point of nonanalyticity in the ground
state energy of the infinite lattice system as a quantum phase transition: The nonanalyticity
could be either the limiting case of an avoided level-crossing or an actual level-crossing.
The first kind is more common, but we shall also discuss transitions of the second kind in
Chapters 11 and 13. The phase transition is usually accompanied by a qualitative change in
the nature of the correlations in the ground state, and describing this change shall clearly
be one of our major interests.

Actually our focus shall be on a limited class of quantum phase transitions — those that
aresecond orderLoosely speaking, these are transitions at which the characteristic energy
scale of fluctuations above the ground state vanishegasproachesg.. Let the energy
A represent a scale characterizing some significant spectral density of fluctuations at zero
temperatureT) for g # g.. ThusA could be the energy of the lowest excitation above the
ground state, if this is nonzero (i.e., there is an energyAjgr if there are excitations at
arbitrarily low energies in the infinite lattice limit (i.e., the energy spectrugajges$, A
is the scale at which there is a qualitative change in the nature of the frequency spectrum
from its lowest frequency to its higher frequency behavior. In most cases, we will find that
asg approachesg., A vanishes as

A~ Jlg— gel® (1.1)

(exceptions to this behavior appear in Section 14.2.6). Here the energy scale of a
characteristic microscopic coupling, andis acritical exponentThe value okv is usually

3
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v

v

(b)

Figure 1.1. Low eigenvalueg, of a HamiltonianH (g) on a finite lattice, as a function
of some dimensionless couplig For the case wherl (g) = Hp + gHs, whereHp
andH; commute and are independentgyfthere can be an actual level-crossing, as in
(a). More generally, however, there is an “avoided level-crossing,” as in (b).

universal that is, it is independent of most of the microscopic details of the Hamiltonian
H (g) (we shall have much more to say about the concept of universality below, and in the
following chapters). The behavior (1.1) holds bothdos g and forg < g. with the same
value of the exponerdv, but with different nonuniversal constants of proportionality. We
shall sometimes use the symhbl, (A_) to represent the characteristic energy scale for
9> e (9 < 9o)-

In addition to a vanishing energy scale, second-order quantum phase transitions invariably
have a diverging characteristic length scald his could be the length scale determining
the exponential decay of equal-time correlations in the ground state or the length scale at
which some characteristic crossover occurs to the correlations at the longest distances. This
length diverges as

1~ Alg — gel”, (1.2)

wherev is a critical exponent, and is an inverse length scale (a “momentum cutoff”)
of order the inverse lattice spacing. The ratio of the exponents in (1.1) and (& Zhis
dynamic critical exponent: The characteristic energy scale vanishes zh thaver of the
characteristic inverse length scale

A~EZ (1.3)

It is important to notice that the discussion above refers to singularities igrthund
state of the system. So strictly speaking, quantum phase transitions occur only at zero
temperature] = 0. Because all experiments are necessarily at some nonzero, though
possibly very small, temperature, a central task of the theory of quantum phase transitions
is to describe the consequences of this= 0 singularity on physical properties at> 0.

It turns out that working outward from the quantum critical poingat g. andT = 0is a
powerful way of understanding and describing the thermodynamic and dynamic properties
of numerous systems over a broad range of valugg efg;| andT. Indeed, it is not even
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necessary that the system of interest ever have its microscopic couplings reach a value such
thatg = gc: It can still be very useful to argue that there is a quantum critical point at

a physically inaccessible couplirgg= g. and to develop a description in the deviation

|g — gcl. Itis one of the purposes of this book to describe the physical perspective that such
an approach offers and to contrast it from more conventional expansions about very weak
(sayg — 0) or very strong couplings (say— 00).

1.2 Quantum Versus Classical Phase Transitions

There are two important possibilities for thie- 0 phase diagram of a system near a quantum
critical point. These are shown in Fig. 1.2, and we will meet examples of both kinds in this
book. In the first, shown in Fig. 1.2a, the thermodynamic singularity is present only at
T =0, and allT > 0 properties are analytic as a functiongofiearg = gc. In the second,
shown in Fig. 1.2b, there is a line @f > 0 second-order phase transitions (this is a line at
which the thermodynamic free energy is not analytic) that terminates &t th® quantum
critical point atg = gc. In the vicinity of such a line, we will find that the typical frequency

at which the important long distance degrees of freedom fluctuwgig satisfies

Norp < KaT. (1.4)

Under these conditions, it will be seen that a purdssicaldescription can be applied

to these important degrees of freedom — this classical description works in the shaded
region of Fig. 1.2b. Consequently, the ultimate critical singularity along the liffe f0

phase transitions in Fig. 1.2b is described by the theory of second-order phase transitions
in classical systems. This theory was developed thoroughly in the past three decades and

A
T
0 ° >
9c g
. (a)
T
0 >
9c g
(b)

Figure 1.2. Two possible phase diagrams of system near a quantum phase transition.
In both cases there is a quantum critical poingat gc andT = 0. In (b), there is a

line of T > 0 second-order phase transitions terminating at the quantum critical point.
The theory of phase transitions in classical systems driven by thermal fluctuations can
be applied with the shaded region of (b).
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has been explained in many popular reviews and books [342, 65, 268, 196, 588]. We shalll
assume here that the reader has some familiarity with at least the basic concepts of this
classical theory and will occasionally refer to some of these sources for specific details.
Notice that the shaded region of classical behavior in Fig. 1.2b lies within the wider window
of the phase diagram, with moderate value$gf gc| and T, which we asserted above
should be described as an expansion about the quantum critical pgiat gt andT = 0.

So our study of quantum phase transitions will also apply to the shaded region of Fig. 1.2b,
where it will yield information complementary to that available by directly thinking of the

T > 0 phase transition in terms of purely classical models.

We note that phase transitions in classical models are driven only by thermal fluctuations,
as classical systems usually freeze into a fluctuationless ground state @t In contrast,
guantum systems have fluctuations driven by the Heisenberg uncertainty principle even in
the ground state, and these can drive interesting phase transitidns-ad. TheT > 0
region in the vicinity of a quantum critical point therefore offers a fascinating interplay of
effects driven by quantum and thermal fluctuations; sometimes, as in the shaded region of
Fig. 1.2b, we can find some dominant, effective degrees of freedom whose fluctuations are
purely classical and thermal, and then the classical theory will apply. However, as already
noted, our attention will not be limited to such regions, and we shall be interested in a
broader section of the phase diagram.

1.3 Experimental Examples

To make the concepts of the previous sections less abstract, let us mention some recent ex-
perimental studies of second-order quantum phase transitions. All of the following examples
will also be discussed further in this book.

. The low-lying magnetic excitations of the insulator LiHpEonsist of fluctuations
of the Ho ions between two spin states that are aligned parallel and antiparallel to a
particular crystalline axis. These states can be represented by a two-state “Ising” spin
variable on each Ho ion. At = 0, the magnetic dipolar interactions between the Ho
ions cause all the Ising spins to align in the same orientation, and so the ground state is
a ferromagnet. Bitko, Rosenbaum, and Aeppli [56] placed this material in a magnetic
field transverse to the magnetic axis. Such a field induces quantum tunneling between
the two states of each Ho ion, and a sufficiently strong tunneling rate can eventually
destroy the long-range magnetic order. Such a quantum phase transition was indeed
observed [56], with the ferromagnetic moment vanishing continuously at a quantum
critical point. Note that such a transition can, in principle, occur precisely-at0,
when it is driven entirely by quantum fluctuations. We shall call The= 0O state
without magnetic order guantum paramagnetHowever, we can also destroy the
magnetic order at a fixed transverse magnetic field (possibly zero), simply by raising
the temperature, enabling the material to undergo a conventional Curie transition to
a high-temperature magnetically disordered state. Among the objectives of this book
is to provide a description of the intricate crossover between the zero-temperature
guantum transition and the finite temperature transition driven partially by thermal
fluctuations; we shall also delineate the important differences betweeh thed
quantum paramagnet and the high-temperature “thermal paramagnet;” see Chapters 5,
7,and 8.
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The heavy fermion material CeguyAuy [439, 514, 555, 477] has a magnetically
ordered ground state, with the magnetic moments on the Ce ions arranged in a spin
density wave with an incommensurate period (this simply means that the expectation
value of the spin operator oscillates in a wavelike manner with a period that is not
a rational number times a period of the crystalline lattice). This order is present at
larger values of the doping. By decreasing the value af or by placing the crystal
under pressure, itis possible to destroy the magnetic order in a second-order quantum
phase transition. The ground state then becomes a Fermi liquid with a rather large
effective mass for the fermionic quasiparticles. This transition will be discussed in
Chapter 12.

The two-dimensional electron gas in semiconductor heterostructures has a very rich
phase diagram with a large number of quantum phase transitions. Let us describe
a particular class of transitions that will be relevant to the theoretical development
in this book. As is well known, the energy spectrum of electrons moving in two
dimensions in the presence of a perpendicular magnetic field splits into discrete,
equally spaced energy levels (Landau levels), with each level having the same fixed
macroscopic degeneracy. Consider a two-dimensional electron gas in a magnetic field
at density such that the lowest Landau level is precisely filled (filling facter1).

The electronic spins are then fully polarized in the direction of the field, and the ground
state is a fully polarized ferromagnet. Actually, this ferromagnetic order is induced
more by the ferromagnetic exchange interactions between the electrons than by the
Zeeman coupling to the external field. Now imagine bringing two such ferromagnetic
layers close to each other [410, 401, 474, 402]. For large layer spacing, the two
layers will have their ferromagnetic moments both aligned in the direction of the
appliedfield. For smaller spacings, there turns out to be a substamtifefromagnetic
exchange between the two layers, so that the ground state eventually becomes a
spin singlet, created by a “bonding” of electrons in opposite layers into spin singlet
pairs [584, 128, 129]. The transition from a fully polarized ferromagnet to a spin
singlet state actually happens through two second-order quantum phase transitions
viaan intermediate state with “canted” antiferromagnetic order (this shall be discussed
in Section 13.4).

The low-energy spin fluctuations of the insulatoprCaO, consist of quantum fluc-
tuations in the orientations & = 1/2 spins located on the sites of a square lattice.
Each spin represents the magnetic states ofitbebitals on a Cu ion. There is an
antiferromagnetic exchange coupling between the spins that prefers an antiparallel
orientation for neighboring spins, and the resulting Hamiltonian is the square lattice
S = 1/2 Heisenberg antiferromagnet (the modifier “Heisenberg” indicates that the
model has the fulBU(2) symmetry of rotations in spin space). The ground state of
this model is a “Mel” state, in which the spins are polarized in opposite orientations
on the two checkerboard sublattices of the square lattice. However, theoretically, we
can consider a more general model with both first- and second-neighbor antiferro-
magnetic exchange. As we shall discuss in Chapter 13, such a model can undergo
a quantum phase transition in which theéll’'order is destroyed, and the ground
state becomes a quantum paramagnet with a gap to all spin excitations. While such a
phase transition has not been observed experimentally so far, it still pays to consider
the physics of this quantum critical point and to understand the finite-temperature
crossovers in its vicinity. These crossovers also influence the behavior of the nearest
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neighbor model found in L& uOy, and they turn out to be a useful way of interpreting
its magnetic properties at intermediate temperatures; see Chapters 5, 7, and 13.

1.4 Theoretical Models

The physics underlying the gquantum transitions discussed above is quite complex and,
in many cases, not completely understood. Our strategy in this book will be to thoroughly
analyze the physical properties of quantum phase transitions in two simple theoretical model
systems in Part Il: the quantum Ising and rotor models; fortunately, these simple models
also have some direct experimental applications and these will be noted at numerous points
in Part II. Part 11l will then survey some important quantum phase transitions in other
models of physical interest. Our motivation in dividing the discussion in this manner is
mainly pedagogical: The quantum transitions of the Ising/rotor models have an essential
simplicity, but their behavior is rich enough to display most of the basic phenomena we
wish to explore. It will therefore pay to first meet the central physical ideas in this simple
context.

We will introduce the quantum Ising and rotor models in turn, discussing the nature of
the quantum phase transitions in them.

1.4.1 Quantum Ising Model

We begin by writing down the Hamiltonian of the quantum Ising model. It is
Hio=-Jg) 6°—3) &6} (1.5)
i (i)

As in the general notation introduced aboves 0 is an exchange constant, which sets the
microscopic energy scale, agd> 0 is a dimensionless coupling, which will be used to tune

H, across a quantum phase transition. The quantum degrees of freedom are represented by
operators”*, which reside on the siteis,of a hypercubic lattice id dimensions; the sum

(ij) is over pairs of nearest neighbor siteg. Thes“* are the familiar Pauli matrices; the
matrices on different sitésact on different spin states, and so matrices wigh j commute

with each other. In the basis where theate diagonal, these matrices have the well-known

form
~z_ (1 0\ ., (0 —i\ . (01
o _<O _1>, =\, o) =11 o (1.6)

on each siteé. We will denote the eigenvalues of Simply by %, and sooi* takes the
valuest1. We identify the two states with eigenvalugs= +1, —1 as the two possible
orientations of an “Ising spin,” which can oriented up or downn;, | |)i. Consequently

atg = 0, whenH, involves only thes?, H, will be diagonalin the basis of eigenvaluesgf

and it reduces simply to the familiar classical Ising model. Howevegttar € off-diagonal

in the basis of these states, and therefore they induce quantum-mechanical tunneling events
that flip the orientation of the Ising spin on a site. The physical significance of the two terms
in H, should be clear in the context of our earlier discussion in Section 1.3 for LiHoF
The term proportional ta is the magnetic interaction between the spins, which prefers
their global ferromagnetic alignment; the actual interaction in LilHbks a long-range
dipolar nature, but we have simplified this here to a nearest neighbor interaction. The term
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proportional toJg is the external transverse magnetic field, which disrupts the magnetic
order.

Let us make these qualitative considerations somewhat more precise. The ground state
of H, can depend only upon the value of the dimensionless couglimgd so it pays to
consider the two opposing limits>> 1 andg « 1.

First consideg > 1. In this case the first term in (1.5) dominates, and, to leading order
in 1/g, the ground state is simply

0 =]T1-x (1.7)

where
| =)= Di +1 Li/V2,
| <) =MD —1/V2

are the two eigenstates of With eigenvaluestl. The values o0& on different sites are

totally uncorrelated in the state (1.7), and(@p}iz&jzw) = §jj. Perturbative corrections in

1/g will build in correlations ino? that increase in range at each order fig;ifor g large

enough these correlations are expected to remain short-ranged, and we expect in general
that

(1.8)

(0|6767|0) ~ e il (1.9)

for large|x; — x;|, wherex; is the spatial coordinate of sit¢|0) is the exact ground state
for largeg, and¢ is the “correlation length” introduced above (1.2).

Next we consider the opposing limgt < 1. We will find that the nature of the ground
state is qualitatively different from the largelimit above, and we shall use this to argue
that there must be a quantum phase transition between the two limiting cases at a critical
g = g. of order unity. Forg « 1, the second term in (1.5) coupling neighboring sites
dominates; ayy = 0 the spins are either all up or all down (in eigenstates?f

=TT or =] (1.10)

Turning on a smalyy will mix in a small fraction of spins of the opposite orientation, but in
an infinite system the degeneracy will survive at any finite order in a perturbation theory in
g. This is because there is an exact gloBalsymmetry transformation (generated by the
unitary operatof [; o), which maps the two ground states into each other, under which
H, remains invariant:

6% — —67, X — 6%, (1.11)

and there is no tunneling matrix element between the majority up and down spin sectors
of the infinite system at any finite order @ The mathematically alert reader will note

that establishing the degeneracy to all orderg,iis not the same thing as establishing its
existence for any small nonzeg but more sophisticated considerations show that this is
indeed the case. A thermodynamic system will always choose one or the other of the states
as its ground states (which may be preferred by some infinitesimal external perturbation),
and this is commonly referred to as a “spontaneous breaking” of treymmetry. As in

the largeg limit, we can characterize the ground states by the behavior of correlations of
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67; the nature of the states (1.10) and the srggierturbation theory suggest that
lim  (0/6767|0) = N§, (1.12)

[X; —Xj |—>o00 J
where|0) is either of the ground states obtained frory or | |) by perturbation theory in
g, andNp =# 0 is the “spontaneous magnetization” of the ground state. This identification
is made clearer by the simpler statement

(0/52]0) = £No, (1.13)

which also follows from the perturbation theory gn We haveNy, = 1 for g = 0, but
guantum fluctuations at smajlreduceN, to a smaller, but nonzero, value.

Now we make the simple observation that it is not possible for states that obey (1.9) and
(1.12) to transform into each other analytically as a functiog.dfhere must be a critical
valueg = g at which the larggx; — x;| limit of the two-point correlator changes from
(1.9) to (1.2 ) - this is the position of the quantum phase transition, which shall be the
focus of intensive study in this book. Our arguments so far do not exclude the possibility
that there could be more than one critical point, but this is known not to happéth for
and we will assume here that there is only one critical poirg at g.. Forg > g the
ground state is, as noted earliegq@antum paramagneand (1.9) is obeyed. We will find
that asg approacheg. from above, the correlation length, diverges as in (1.2). Precisely
atg = g, neither (1.9) nor (1.12) is obeyed, and we find instead a power-law dependence
on|x; — x;| atlarge distances. The result (1.12) holds foga# g., when the ground state
is magnetically orderedThe spontaneous magnetization of the ground shigeyanishes
as a power law ag approacheg, from below.

Finally, we make a comment about the excited stated,ofin a finite lattice, there is
necessarily a nonzero energy separating the ground state and the first excited state. However,
this energy spacing can either remain finite or approach zero in the infinite lattice limit, the
two cases being identified as having a gapped or gapless energy spectrum respectively. We
will find that there is an energy gap that is nonzero for al§ # g, but that it vanishes
upon approaching. as in (1.1), producing a gapless spectrurg &t gc.

1.4.2 Quantum Rotor Model

We turn to the somewhat less familiar quantum rotor models. Elementary quantum rotors
do not exist in nature; rather, each quantum rotor is an effective quantum degree of freedom
for the low energy states of a small number of closely coupled electrons. We will first define
the quantum mechanics of a single rotor and then briefly motivate how it might represent
some physically interesting systems. More details on this physical mapping will appear in
Section 5.1.1.1 and Chapters 10, 13.

Each rotor can be visualized as a particle constrained to move on the surface of a (fic-
titious) (N > 1)-dimensional sphere. The orientation of each rotor is represented by an
N-component unit vecto; which satisfies

A2 = 1. (1.14)

The caret om); reminds us that the orientation of the rotor is a quantum mechanical operator,
while i represents the site on which the rotor resides; we will shortly consider an infinite
number of such rotors residing on the sites af-dimensional lattice. Each rotor has a
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momentump;, and the constraint (1.14) implies that this must be tangent to the surface of
theN-dimensional sphere. The rotor position and momentum satisfy the usual commutation
relations

[Ae, Pgl =1d0p (1.15)

on each sité; herea, 8 = 1... N. (Here, and in the remainder of the book, we will always
measure time in units in which

h=1, (1.16)

unless stated explicitly otherwise. This is also a good point to note that we will also set
Boltzmann’s constant

kg =1 (1.17)

by absorbing it into the units of temperatuiie) We will actually find it more convenient
to work with theN (N — 1)/2 components of the rotor angular momentum

Laﬁ =N, ﬁﬂ - ﬁﬂ f)ct‘ (118)
These operators are the generators of the group of rotatidrdimensions, denoted(@®).
Their commutation relations follow straightforwardly from (1.15) and (1.18). The case
N = 3 will be of particular interest to us: For this we defibg = (1/2)e,s, L4, (Where
€qpy IS a totally antisymmetric tensor with3 = 1), and then the commutation relation
between the operators on each site are

[I:a, I:ﬂ] = iéa,gyl:y,
[I:otv ﬁﬂ] = ieaﬂyﬁy» (119)
[Ny, fig]l =0;

the operators with different site labels all commute.

The dynamics of each rotor is governed simply by its kinetic energy term; interesting
effects will arise from potential energy terms that couple the rotors together, and these will
be considered momentarily. Each rotor has the kinetic energy

_J452

He =5 L7 (1.20)

where Y J§ is the rotor moment of inertia (we have put a tilde ogers we wish to reserve
g for a different coupling to be introduced below). The Hamiltonldg can be readily
diagonalized for general values Nf by well-known group theoretical methods. We quote
the results for the physically important cased\of= 2 and 3. FoilN = 2 the eigenvalues
are

J§e?/2 £=0,1,2, ...; degeneracy= 2 — 8. (1.21)

Note that there is a nondegenerate ground statefwitld, while all excited states are two-

fold degenerate, corresponding to a left- or right-moving rotor. In physical applications,
these states can be visualized as the low-lying energy levels of a superconducting quantum
dot: £ measures the deviation in the number of Cooper pairs on the dot from the number
found in the ground state, antfj is a measure of the inverse self-capacitance of the dot.
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More details on this physical applicationf= 2 quantum rotors will appear in Chapter 10.
For N = 3, the eigenvalues dfix are

Jgee+1)/2 ¢=0,1,2,...; degeneracy 2¢ + 1, (1.22)

corresponding to the familiar angular momentum states in three dimensions. These states
can be viewed as representing the eigenstates of an even number of antiferromagnetically
coupled Heisenberg spins. The ground state is a spin singlet, as can be expected from an
antiferromagnetic coupling that prefers spins in opposite orientations. This mapping will be
discussed more explicitly in Section 5.1.1.1 and in Chapter 13, where will see that there is a
general and powerful correspondence between quantum antiferromagnkits-aBdotors.
The O(3) quantum rotors also describe the double layer quantum Hall systems discussed
in Section 1.3 [128, 129].

We are ready to write down the full quantum rotor Hamiltonian, which shall be the focus
of intensive study in Part Il. Itis

J§ ~2 P
HR=7giZ Li—J%):ni.nj. (1.23)
We have augmented the sum of kinetic energies of each site with a couplibgiween

rotor orientations on neighboring sites. This coupling energy is minimized by the simple
“magnetically ordered” state in which all the rotors are oriented in the same direction.
In contrast, the rotor kinetic energy is minimized when the orientation of the rotor is
maximally uncertain (by the uncertainty principle), and so the first teridgrprefers a
guantum paramagnetic state in which the rotors do not have a definite orientation (i.e.,
(n) = 0). Thus the roles of the two terms kg closely parallel those of the terms in the
Ising modelH,. As in Section 1.4.1, fo§ > 1, when the kinetic energy dominates, we
expect a quantum paramagnet in which, following (1.9),

(O] - Nj|0) ~ e Xi—xil/E, (1.24)

Similarly, for § <« 1, when the coupling term dominates, we expect a magnetically ordered
state in which, as in (1.12),
lim  (OA; - A;|0) = NZ. (1.25)

[Xi =X |—00
Finally, we can anticipate a second-order quantum phase transition between the two phases
at§ = §., and the behavior oNg and& upon approaching this point will be similar to
that in the Ising case. These expectations turn out to be corredtfod, but we will see
that they need some modifications fbe= 1. In one dimension, we will show thgt = 0
for N > 3, and so the ground state is a quantum paramagnetic state for all ngnZér®
caseN = 2,d = 1 is special: There is a transition at a findg but the divergence of
the correlation length does not obey (1.2) and the long-distance behavior of the correlation
function§ < §, differs from (1.25). This case will not be considered until Section 14.3 in
Part Il1.



